A novel gallium compound synergistically enhances bortezomib-induced apoptosis in mantle cell lymphoma cells.

نویسندگان

  • Christopher R Chitambar
  • David P Purpi
چکیده

Combination chemotherapy forms the backbone of cancer treatment. There is a need for new drug combinations for the treatment of mantle cell lymphoma (MCL). Herein, we show that gallium maltolate, a novel gallium compound, synergizes with bortezomib, a proteasome inhibitor, to induce cell death in MCL Granta cells. Cells exposed to either agent displayed caspase-3 activation, a loss of mitochondrial membrane potential, and a decrease in chymotrypsin-like activity. These effects were increased with both agents in combination. Our results show for the first time that the proteasome may be a target for gallium maltolate and suggest that the therapeutic potential of combination bortezomib and gallium maltolate warrants further investigation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein Kinase CK2 Inhibition Down Modulates the NF-κB and STAT3 Survival Pathways, Enhances the Cellular Proteotoxic Stress and Synergistically Boosts the Cytotoxic Effect of Bortezomib on Multiple Myeloma and Mantle Cell Lymphoma Cells

CK2 is a pivotal pro-survival protein kinase in multiple myeloma that may likely impinge on bortezomib-regulated cellular pathways. In the present study, we investigated CK2 expression in multiple myeloma and mantle cell lymphoma, two bortezomib-responsive B cell tumors, as well as its involvement in bortezomib-induced cytotoxicity and signaling cascades potentially mediating bortezomib resista...

متن کامل

Constitutive and B-cell receptor-induced activation of STAT3 are important signaling pathways targeted by bortezomib in leukemic mantle cell lymphoma.

BACKGROUND The deregulation of several transcription factors contribute to the aggressive course of mantle cell lymphoma. This study focuses on survival signals emanating from the tumor environment and involving the signal transducer and activator of transcription (STAT) 3 through cytokines or antigen recognition. DESIGN AND METHODS Primary mantle cell lymphoma cells were isolated from 20 leu...

متن کامل

The pathophysiological significance of PPM1D and therapeutic targeting of PPM1D-mediated signaling by GSK2830371 in mantle cell lymphoma

PPM1D is a serine/threonine phosphatase that negatively regulates key DNA damage response proteins, such as p53, p38 MAPK, histone H2A.X, and ATM. We investigated the pathophysiological significance of PPM1D and its therapeutic targeting by the novel PPM1D inhibitor GSK2830371 in mantle cell lymphoma (MCL). Oncomine-based analyses indicated increased PPM1D mRNA levels in MCL cells compared with...

متن کامل

The proteasome inhibitor bortezomib induces apoptosis in mantle-cell lymphoma through generation of ROS and Noxa activation independent of p53 status.

Mantle-cell lymphoma (MCL) is a mature B-cell lymphoma with an aggressive course and generally poor prognosis. Conventional chemotherapy has little efficacy. Bortezomib is a novel, reversible, and highly specific proteasome inhibitor that appears as a new hope for MCL treatment. We have analyzed the in vitro sensitivity to bortezomib in 4 MCL cell lines and in primary tumor cells from 10 MCL pa...

متن کامل

Cell death by bortezomib-induced mitotic catastrophe in natural killer lymphoma cells.

The proteasome inhibitor bortezomib (PS-341/Velcade) is used for the treatment of relapsed and refractory multiple myeloma and mantle-cell lymphoma. We recently reported its therapeutic potential against natural killer (NK)-cell neoplasms. Here, we investigated the molecular mechanisms of bortezomib-induced cell death in NK lymphoma cells. NK lymphoma cell lines (SNK-6 and NK-YS) and primary cu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Leukemia research

دوره 34 7  شماره 

صفحات  -

تاریخ انتشار 2010